Scales, $|A|$, and Limburg Tonogenesis

Ben Hermans & Marc van Oostendorp

Meertens Instituut / Royal Netherlands Academy of Arts and Sciences, Amsterdam

Old-world Conference in Phonology III
Budapest, January 17-19, 2005
Sonority

Sonority plays an important role in the literature:

- on phonotactics
- on tone-bearing units
- ...

but the formalisation of the concept is still a matter of debate
Sonority plays an important role in the literature:

- on phonotactics
- on tone-bearing units
- ...

but the formalisation of the concept is still a matter of debate
Scales, $|A|$, and Limburg Tonogenesis

The theory of sonority
 Theoretical background
 Consonants and $|A|$
 Further motivation for $|A|$ on /r, η/

Tonogenesis in Limburg
 Tones in Limburg
 Tonogenesis
 Schwa apocope

Conclusions
Scales, $|A|$, and Limburg Tonogenesis

The theory of sonority

Theoretical background
Consonants and $|A|$
Further motivation for $|A|$ on /r, η/

Tonogenesis in Limburg
Tones in Limburg
Tonogenesis
Schwa apocope

Conclusions
Two parameters

- Sonority is rooted in the phonetics vs. sonority is derived from the cognitive organisation ([±phonetics])
- Sonority is a uniform scale vs. sonority consists of a number of (possibly conflicting) factors ([±uniform])
A taxonomy of theoretical views

<table>
<thead>
<tr>
<th></th>
<th>+ uniform</th>
<th>- uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ phonetic</td>
<td>1 phonetic factor (e.g. ‘loudness’)</td>
<td>several phonetic factors (e.g. enhancing perceptability)</td>
</tr>
<tr>
<td>- phonetic</td>
<td>1 representational factor (e.g. complexity)</td>
<td>the present proposal</td>
</tr>
</tbody>
</table>

In this talk, we assume a [-phonetic] approach, and argue for a [-uniform] account.
The [\pmuniform] dimension

- Traditionally, sonority is represented in terms of a scale:
 - low vowels $>$ mid vowels $>$ high vowels $>$ liquids $>$ nasals $>$ obstruents
- One implication of scales such as this is what we call *Contiguity of Reference*:
 - Phonological generalisations refer to a contiguous substring of the sonority scale.
- We argue that Contiguity of Reference is undesirable, hence that sonority is not a uniform phenomenon
Representational approaches

- A representational [+uniform] approach is Harris (1990): the more elements a segment has, the more sonorous it is.
- This implies Contiguity of Reference.
A, I, U theory

- We represent a [-uniform] approach based on Element Theory.
- In particular, we follow Scheer (2004), who claims that sonority is a function of three parameters:
 1. the constituent dominating the segment (O or N)
 2. the presence vs. absence of manner elements |?| and |h|
 3. the role of |A| in the expression (head, operator or absent)
- It has been argued by other authors as well that this element makes a segment more sonorous (e.g. Ritter 1997, Hermans 2003, Van der Torre 2004)
Asymmetries within the set of elements

- We concentrate on presence vs. absence of $|A|$
- We thus establish a subscale $|A| > \emptyset$
- That presence vs. absence of $|A|$ can play a role in defining sonority, is almost trivial for vowels:
 \[
 [i] = |I| \quad [u] = |U| \\
 [e] = |I| \bullet |A| \quad [o] = |U| \bullet |A| \\
 [a] = |A|
 \]
- The more $|A|$, the more sonorous
Example: stress attraction

- In Gujarati, if a word contains an [a], this is stressed (else some other vowel is stressed, with extra avoidance of schwa) (De Lacy 2002)

- This can be seen as a preference for stress on |A|

<table>
<thead>
<tr>
<th>Gujarati</th>
<th>English Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[utáru]</td>
<td>‘passenger’</td>
</tr>
<tr>
<td>[sáme]</td>
<td>‘in front’</td>
</tr>
<tr>
<td>[tádžetəɾ]</td>
<td>‘recently’</td>
</tr>
<tr>
<td>[sinemá]</td>
<td>‘movie theatre’</td>
</tr>
<tr>
<td>[pəhélu]</td>
<td>‘first’</td>
</tr>
<tr>
<td>[júrop]</td>
<td>‘Europe’</td>
</tr>
<tr>
<td>[kʰəmíso]</td>
<td>‘shirts’</td>
</tr>
</tbody>
</table>
Example: reduction

- In Bulgarian, we find the following reductions of vowels in unstressed position:
 - i, e → i
 - a → ə
 - o, u → u
- This can be understood as loss of the $|A|$ in non-prominent positions
- There thus is a one-to-one relation between $|A|$ and prosodic prominence

róguf ‘of horn’ | rugát ‘horned’
sélú ‘village’ | silá ‘villages’
rábutə ‘work’ | rəbótnik ‘worker’
Scales, $|A|$, and Limburg Tonogenesis

The theory of sonority
 Theoretical background
 Consonants and $|A|$
 Further motivation for $|A|$ on /r, η/

Tonogenesis in Limburg
 Tones in Limburg
 Tonogenesis
 Schwa apocope

Conclusions
Consonants and |A|

- There are various interpretations of the role of the element |A| in consonants.
- The basic claim is that |A| is part of /r/ and /ŋ/ (in Dutch dialects), but not of other sonorant consonants.
Nuclear positions favour /ŋ/

<table>
<thead>
<tr>
<th>Standard Dutch</th>
<th>Wieringen Dutch</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[hɔnt]</td>
<td>[hɔŋt]</td>
<td>‘dog’</td>
</tr>
<tr>
<td>[dɑnsə]</td>
<td>[dɑŋsə]</td>
<td>‘to dance’</td>
</tr>
<tr>
<td>[tɑnt]</td>
<td>[tɑŋt]</td>
<td>‘tooth’</td>
</tr>
</tbody>
</table>

- Many continental West-Germanic dialects display a process of velarisation.
- This can be seen as an instance of attraction of |A| to prominent (Nuclear) positions.
/ŋ/ shuns non-prominent positions

- [ŋ] avoids onset positions in many languages of the world.
- This can be seen as an instance of |A| avoiding dependent/consonantal (Onset) positions
Nuclear positions favour /r/

<table>
<thead>
<tr>
<th>Standard Dutch</th>
<th>The Hague Dutch</th>
<th>‘under’</th>
<th>‘poet’</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ɔnder]</td>
<td>[ɔnda]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[dɪxtər]</td>
<td>[dɪxtə]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A similar process can be found in Standard German
- This can be seen as an instance of attraction of |A| to prominent positions: |A| moves to the nuclear peak
/r/ shuns non-prominent positions

<table>
<thead>
<tr>
<th>Latin</th>
<th>Sestu Campadinian</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[rosa]</td>
<td>[ar:ova]</td>
<td>‘rose’</td>
</tr>
<tr>
<td>[rana]</td>
<td>[ar:ana]</td>
<td>‘frog’</td>
</tr>
<tr>
<td>[luce]</td>
<td>[lu3i]</td>
<td>‘light’</td>
</tr>
</tbody>
</table>

- A similar effect can be found in Mbabaram
- This can be seen as an instance of |A| avoiding dependent/consonantal (Onset) positions
Scales, $|A|$, and Limburg Tonogenesis

The theory of sonority
 Theoretical background
 Consonants and $|A|$
 Further motivation for $|A|$ on /r, η/

Tonogenesis in Limburg
 Tones in Limburg
 Tonogenesis
 Schwa apocope

Conclusions
Further motivation for $|A|$ on /r, η/

- If /r, η/ indeed contain the element $|A|$ we expect there to be interaction between these segments, and low vowels, e.g. in the form of a lowering effect of these consonants on preceding vowels.
Lowering effects of /ŋ/

- An instance of a lowering effect of /ŋ/ can be found in Alabama English (Veatch 1991): in words like *spring*, *finger*, *thing*, etc. the vowel is realized as [æ].
- According to Veatch, Alabama Lowering is “an unnatural, anticoarticulatory effect”.
- Similarly, Zhang (2006) introduces the following constraint in his analysis of Shiaoxing:
 - *[ŋ][+high]: [ŋ] cannot occur before any [+high] (semi-)vowel
- Both Alabama and Shiaoxing can be analysed as |\text{A}| spreading
Lowering effects of /r/

- It is well-known that in Canadian English, the distinction between e.g. *merry* and *marry* is lost, due to lowering of the former.
- Non-rhotic varieties of English similarly provide evidence for the presence of |A| on /r/: they have intrusive r when the preceding vowel is not high:
 - j’étais déjà[r] ici
 - UEAFA[r] officials
- These phenomena find a parallel in the fact that after high vowels hiatus is resolved by the insertion of a homorganic glide:
 - the key[j] is
 - the zoo[w] is
Scales, |A|, and Limburg Tonogenesis

The theory of sonority
Theoretical background
Consonants and |A|
Further motivation for |A| on /r, η/

Tonogenesis in Limburg
Tones in Limburg
Tonogenesis
Schwa apocope

Conclusions
The theory of sonority

Tonogenesis in Limburg

Conclusions

Limburg speaking area in the Netherlands and Belgium
Tonal contrasts in modern Limburg

- [wáːtər] ‘water’
- [móːdər] ‘mother’
- [míːn] ‘my, neuter’
- [réːt] ‘crevice’
- [kál] ‘nonsense’
- [máːn] ‘man’
- [páːtər] ‘father (clerical)’
- [móːdə] ‘fashion’
- [mîːn] ‘coal mine’
- [réːt] ‘reed’
- [káː] ‘to talk’
- [páːn] ‘pan’
Tones: representations

Level high tone ('Schleifton')

Falling tone ('Stoßton')
Scales, |A|, and Limburg Tonogenesis

The theory of sonority
- Theoretical background
- Consonants and |A|
- Further motivation for |A| on /r, η/

Tonogenesis in Limburg
- Tones in Limburg
- Tonogenesis
- Schwa apocope

Conclusions
Long low and mid vowels: falling tone

WGM *eː < *eː [brɛːf] ‘letter’
WGM *eː < *eo [lɛːf] ‘sweet’
WGM *oː [hɔːt] ‘hat’
WGM *ɛː < *ai [sɲɛ] ‘snow’
WGM *ɔː < *au [brʊɛt] ‘bread’
WGM *aː [drɔːt] ‘thread’

(Data are from the tonally conservative dialect of Maasbracht.)
Long high vowels and diphthongs: level high tone

WGM *iː	[wiːt]	‘far’
WGM *uː	[vuːl]	‘dirty’
WGM *ai	[klɛɨt]	‘dress’
WGM *au	[bɔːum]	‘tree’
Short vowel + η or r: falling tone

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>vǎỳ</td>
<td>'to catch'</td>
</tr>
<tr>
<td>bǎỳ</td>
<td>'afraid'</td>
</tr>
<tr>
<td>brǐỳ</td>
<td>'to bring'</td>
</tr>
<tr>
<td>stóỳ</td>
<td>'stood'</td>
</tr>
<tr>
<td>bâr</td>
<td>'severe'</td>
</tr>
<tr>
<td>vær</td>
<td>'far'</td>
</tr>
<tr>
<td>hór</td>
<td>'wire gauze'</td>
</tr>
</tbody>
</table>
Short vowel + any other consonant: level high tone

kóp | ‘head’
vóx | ‘fluid’
wít | ‘white’
máń | ‘man’
mól | ‘mole’
vǽl | ‘skin’
Generalisation

Low and mid vowels : high vowels
/r, ɻ/ : other consonants
Expressing the generalisation

- This generalisation is easily expressed in our framework:
 - A Low tone must be linked to an $|A|$-bearing element.

- This rejects the representation on the left-hand side, but accepts the one on the right-hand side.

<table>
<thead>
<tr>
<th>wrong</th>
<th>well-formed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \</td>
<td>L \</td>
</tr>
</tbody>
</table>
Expressing the generalisation (2)

- It is not possible to express the same generalisation in terms of a scale:
 - low vowels > mid vowels > high vowels > r > l > η > m, n > obstruents
- Either we have to give up Contiguity of Reference (which makes the whole enterprise devoid of content)
- Or we have to change the order of the segments on a language-particular basis:
 - low vowels > mid vowels > r > η > high vowels > l > m, n > obstruents
Desideratum: A theory of visibility

- At first sight, this approach makes strange predictions E.g. a language that allows mid and low vowels, /r/, /ŋ/ in the peak, but not high vowels
- We need a theory of visibility: prosodic heads can only see those place elements that are segmental heads
- Subsyllabic constituents and segments are able to see further details.
- A theory of visibility is needed in any case
Scales, $|A|$, and Limburg Tonogenesis

The theory of sonority
Theoretical background
Consonants and $|A|$
Further motivation for $|A|$ on /r, η/

Tonogenesis in Limburg
Tones in Limburg
Tonogenesis
Schwa apocope

Conclusions
A small, but relevant detour: Schwa Apocope

- Long high vowels and diphthongs do get a falling tone if the next syllable has undergone Schwa Apocope.

\begin{align*}
\text{lîîn} & \quad \text{‘line’} & < & \ast\text{lîîn}e \\cr
\text{prú́m} & \quad \text{‘plum’} & < & \ast\text{prú́m}e \\cr
\text{kléín} & \quad \text{‘small’} & < & \ast\text{kléín}e \\cr
\text{vró́w} & \quad \text{‘woman’} & < & \ast\text{vró́w}e
\end{align*}
The theory of sonority

Tonogenesis in Limburg

Conclusions

Short vowel plus sonorant consonant

- The same is true for short vowels followed by a sonorant consonant.

<table>
<thead>
<tr>
<th>Word</th>
<th>Meaning</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>hál</td>
<td>'hall'</td>
<td>< *hale</td>
</tr>
<tr>
<td>héł</td>
<td>'hell'</td>
<td>< *hele</td>
</tr>
<tr>
<td>kín</td>
<td>'chin'</td>
<td>< *kine</td>
</tr>
<tr>
<td>spín</td>
<td>'spider'</td>
<td>< *spine</td>
</tr>
<tr>
<td>stým</td>
<td>'voice'</td>
<td>< *steme</td>
</tr>
<tr>
<td>sóm</td>
<td>'sum'</td>
<td>< *some</td>
</tr>
<tr>
<td>tróm</td>
<td>'drum'</td>
<td>< *trame</td>
</tr>
<tr>
<td>vlám</td>
<td>'flame'</td>
<td>< *vlame</td>
</tr>
</tbody>
</table>
An alternative solution to our account

Given the relevance of Schwa Apocope an alternative solution seems possible (Boersma p.c.):

- the sonorants /r/ and /ŋ/ attract a falling tone because they were always followed by a schwa.
 - Not true for /r/.
 - True for /ŋ/; all instances of velar nasal have -/ŋə/ as their source.
Alternative solution does not work for /r/

- Forms attested in Middle Dutch and Middle High German
 - bář ‘severe’
 - dár ‘male bee’
 - tær ‘tar’
- Forms that were non-existent in Middle Dutch and Middle High German
 - bór (de wolf) (proper name)
 - hór ‘wire gauze’
Alternative solution seems to work for /η/.

- Forms which were the result of schwa apocope:
 - sláŋ ‘snake’ < *slaŋe
 - táŋ ‘(pair of) tongs’ < *taŋe
 - tóŋ ‘tongue’ < *tonge
 - jóŋ ‘boy’ < *jonge
Why we still maintain that /η/ attracts low tone

- There are also velar nasals which are not the result of schwa drop in -/ngə/
- These are the result of velarisation (as in Wieringen)
Why we still maintain that /ŋ/ attracts low tone

- Velarisation of a nasal is always accompanied by a falling tone (Welter 1933).
- Some examples from the region to the west of Aachen
 - fíŋ ‘fine’ < *fiːn
 - wíŋ ‘wine’ < *wiːn
 - brýŋ ‘brown’ < *bruːn
 - běŋ ‘leg’ < *bɛin
 - éŋ ‘one’ < *ɛin
 - kléŋ ‘small’ < *kleɪn
Conclusions

- We have provided evidence for a multidimensional theory of sonority, and implemented this in a representational framework
- In particular, we argue that the sonorants [r, η] both carry the element |A|
- This makes them more sonorous
- Certain questions remain, e.g. what explains the asymmetry between |A| on the one hand, and |I|, |U| on the other.