Palatalization and Centralization in Samothraki Greek

Nina Topintzi & Marc van Oostendorp

Universities of Patras, Thessaloniki and Leiden and the Meertens Instituut

May 10, 2008

Summary of the argument

- We present data from Samothraki Greek on the interaction of r loss, palatalisation of velars, and centralization of front vowels
- Constraint-based models are good in describing *conspiracies*, rule-based models are good in describing *opacity*. The Samothraki facts show both
- We argue that a representational solution is to be preferred over a derivational one

• • = • • =

Palatalization and Centralization in Samothraki Greek

Three Processes of Samothraki Phonology

Palatalization, Centralization, and r Deletion

Derivationalism in Optimality Theory

Comparative Markedness Stratal OT Candidate Chains

A representational approach

No opacity if the processes are well defined Independent evidence for BINASS

Palatalization, Centralization, and r Deletion

Palatalization

Like in other Greek dialects velars are palatalized before the front vowels /i,e/:

/fegi/	[feg']	φέγγει	'he beams/shines'	(K 66)
/toki/	[tok']	τόκοι	'(bank) interests'	(K 66)
/kima/	[k'ima]	κύμα	'wave'	(K 62)
/xino/	[x'inu]	χύνω	'pour'	(K 63)
/ɣena/	[ɣ'ena]	γέννα	'birth'	(K 63)
Our data	in this pape	er are from	η Κατσάνης 1996 (= Ι	<)

/r/-deletion and lengthening

 /r/ is deleted in onsets, causing lengthening of the following vowel (K 50-55):

/roɣa/	[oːɣa]	ρώγα	'nipple'
/rema/	[eːma]	ρέμα	'stream'
/xroma/	[xoːma]	χρώμα	'colour'
/mavros/	[mavuːs]	μαύρος	'black'
/krotos/	[koːtus]	κρότος	'bang'
We assume th	at this show	ws that ons	ets in Samothraki Greek are moraic

(cf. Topintzi 2006).

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

Opaque interaction of /r/-deletion and palatalization

- velar + front vowel sequences which are the result of r deletion are not subject to palatalization:

Centralization is not due to length

 If the preceding consonant is not velar, we do not find centralization

/prima/	[piːma]	'fine'
/prepi/	[peːp(i)]	ʻit must'
/tripa/	[tiːpa]	'hole'
/trexo/	[teːxo]	ʻl run'
/friði/	[fiːð]	'eyebrow'

A (10) > A (10) > A (10)

Opacity

- Opacity is a classical problem for Optimality Theory.
- A rule $A \rightarrow B / C_D$ is opaque if:
 - ▶ We find *CAD*, or
 - ▶ We find an A changed to B outside of context *C*_*D*
- Palatalization is opaque according to the first part definition: we find non-palatalized consonants next to underlyingly front vowels

Notice that technically the process is not completely opaque, since we do not find plain velars before front vowels; it is an opaque conspiracy.

A derivational analysis

underlying form	krima	kima
palatalization	-	k'ima
r deletion	ki:ma	-
centralization	kıːma	-
output	kıːma	k'ima

A (10) A (10) A (10)

э

Palatalization, Centralization, and r Deletion

A conspiracy

- However, the derivational analysis runs into a classical problem for rule-based accounts: there is a conspiracy
- Palatalisation and centralisation work on exactly the same environments, viz. a velar obstruent followed by a front vowel
- In other words, both are responses to the same well-formedness requirement (which we will refer to as *ki)

Palatalization and Centralization in Samothraki Greek

Three Processes of Samothraki Phonology Palatalization, Centralization, and r Deletion

Derivationalism in Optimality Theory

Comparative Markedness Stratal OT Candidate Chains

A representational approach

No opacity if the processes are well defined Independent evidence for BINASS

🗇 🕨 🔺 🖻 🕨 🔺 🖻

An opaque conspiracy

- We thus find a (rather unique) example of a process interaction which shows the characteristics both of a conspiracy and of opacity
- Conspiracies are the classical argument for constraints and against rules; opacity is the classical argument for rules and against constraints.
- However, various models have been developed within OT which incorporate a limited form of derivationalism
- Yet also these models fail to capture the generalisation in an elegant way

A (1) > A (1) > A

Comparative Markedness

- One rather weak version of derivationalism in OT is Comparative Markedness
- In this theory, we divide every traditional markedness constraint C into two markedness constraints C_N and C_O
- C_O is violated if the marked structure already exists underlyingly; C_N is violated otherwise
- In this case we could introduce *ki_O (violated by /kima/→[kima]) and *ki_N (violated by /krima/→[kima])
- This is a weak type of derivationalism, since we still only have two levels of representation – input and output.

🗇 🕨 🔺 🖻 🕨 🔺 🖻

Comparative Markedness does not suffice

- One conceptual problem with this approach is that it weakens our understanding of conspiracies: there is no longer one constraint, but there are two
- However, C.M. also has the technical problem that we want the solutions to the problem to be different in both cases
- In order to account for the palatalisation, we would need to state that
 *ki_O>NOCENTRALIZATION>NOPALATALIZATION
- ▶ But in order to account for the centralization, we need to state that *ki_N≫NOPAL≫NOCENTRAL

A (10) > A (10) > A (10)

Stratal OT

- Stratal OT is a model in which phonological forms go through a sequence of phonological evaluations, each a parallel OT grammar
- In this case, we could assume that palatalisation applies at one level, and centralisation and r deletion at another.

Stratal OT, or Derivational OT is mostly known from work by Kiparsky, Rubach, Bermúdez-Otero et al.

A (10) > A (10) > A (10)

Constraints

- *ki: An onset velar obstruent and a following vowel should agree in palatality (Rubach 2007)
- ► NOCENTRAL: Unrounded vowels should be front.
- NOPALATAL: Velars should not have a palatal secondary articulation.
- *r/Onset: [r] should not occur in the onset
- MAX-*x*: Preserve underlying timing units.
- ► MAX-r: Preserve underlying /r/.

MAX-r is used here for convenience; for a full analysis see Topintzi 2006.

- 4 同 2 4 日 2 4 日 2

Three Processes of Samothraki Phonology	Comparative Markedness
Derivationalism in Optimality Theory	Stratal OT
A representational approach	Candidate Chains

Level I

	kima	MAX-r	*r/0 (*ki	NoCentral	NoPalatal
a. 🗇	k'ima		<		 	*
b.	kima		<	*!	 	
C.	kıma		\ \		* <u> </u>	
	krima	MAX-r	*r/0 <	∬*ki	NOCENTRAL	NOPALATAL
a. 🖙	krima		*		 	
b.	k'ima	*i	<		 	*

The ranking of Max-x is irrelevant at this level

-∢ ≣ ▶

Level II

	k'ima	*r/0	MAX-r	*ki	NOPALATAL	NoCentral
a. 🗇	' k'ima			>	*	
b.	kima)*!	 	
c.	kıma			<u>}</u>	 	*!
	krima	*r/0	MAX-r	×ki	NOPALATAL	NOCENTRAL
a.	krima	*!	(
b.	k'iːma		* (}	*!	
c. 🗇	[,] kıːma		*	\sum		*
d.	kirma		*	×!		

MAX-x is responsible for lengthening at this level

(日) (同) (三) (三)

Evaluation of Stratal Analysis

- The stratal analysis can capture the opacity by ordering, and to some extent the conspiracy effect
- The latter happens by two simultaneous rerankings:
 - ▶ NoCentral \gg NoPalatal \rightarrow NoPalatal \gg NoCentral
 - $r/0 \gg Max-r \rightarrow Max-r \gg r/0$
- Notice however that this is still an arbitrary reranking of various constraints
- In particular, there is no evidence that these differences in any way are connected to morphological differences, as Stratal OT would predict

🗇 🕨 🔺 🖻 🕨 🔺 🖻

Candidate Chain Theory

- A different way of implementing derivationalism in OT is Candidate Chain Theory (McCarthy 2006)
- This theory makes the claim that there are no arbitrary rerankings (there is only one grammar), and
- it does not need a connection between phonological derivation and morphological structure

🗇 🕨 🔺 🖻 🕨 🔺 🖻

How it works

- The Generator function can only make one change at a time (delete one segment, insert one segment, add one association line, etc.)
- Evaluation then proceeds as in standard OT
- The one output is again fed into the Generator function, which can again make one change at a time
- The procedure stops when the input of a loop equals the output (which is guaranteed to happen)

Extrinsic rule ordering

- Input and output and intermediate forms are stored in a 'candidate chain'
- The difference of two adjacent forms in a candidate chains can be described in terms of one faithfulnes violation
- There are constraints on candidate chains, which function as extrinsic rule ordering
- These constraints take roughly the following form:
 - ► PREC(F1,F2): A violation of faithfulness constraint F2 may not be followed by a violation of faithfulness constraint F1.

🗇 🕨 🔺 🖻 🕨 🔺 🖻

CC and Samothraki

- The relevant constraint in this case would be:
 - PREC(NOPALATAL, MAX-r): A violation of faithfulness constraint MAX-r may not be followed by a violation of faithfulness constraint NOPALATAL (r deletion may not be followed by palatalization).

Three Processes of Samothraki Phonology Derivationalism in Optimality Theory A representational approach Comparative Markedness Stratal OT Candidate Chains

Transparent case

kima	*r/0	MAX-r	¦*ki	PREC	NOCEN	NoPal
a. ☞ kima→k'ima			1 	 		*
b. kima			, *i	 		
c. kima→kıma			 	 	*!	

æ

Three Processes of Samothraki Phonology Derivationalism in Optimality Theory A representational approach Comparative Markedness Stratal OT Candidate Chains

Opaque case

	krima	*r/0	MAX-r	*ki	Prec	NOCEN	NOPAL
a.	krima→kiːma→k'iːma			l I	*!		*
b.	krima→kiːma			¦ *!	 		
c. 🖙	r krima→kiːma→kıːma			 	1	*	

Candidates with centralization or palatalization before r deletion are not generated because those feature changes are not optimal in that environment.

- < 同 > < 三 > < 三 >

Evaluation of CC Analysis

- The CC analysis can capture both the opacity and the conspiracy aspects of the phenomenon in one single constraint ranking
- without stipulating a relation to the morphology which is not apparent
- However, it does this at a great theoretical cost, viz. by using a constraint PREC(NOPALATAL,MAX-r), relating two phenomena which are not conceptually related (the opacity effect is basically stipulated)

Palatalization and Centralization in Samothraki Greek

Three Processes of Samothraki Phonology Palatalization, Centralization, and r Deletion

Derivationalism in Optimality Theory

Comparative Markedness Stratal OT Candidate Chains

A representational approach

No opacity if the processes are well defined Independent evidence for BINASS

How do the processes look?

- We present a representational approach, in which we try to explain the fact that palatalisation is blocked in exactly those cases in which r is deleted rather than stipulate it.
- The idea is that palatalisation is spreading,
- that deletion of r leaves a trace
- and that spreading is not allowed across this trace
- For this reason, *ki has to be satisfied in a different way, viz. by deletion of the palatal feature: centralization

What is palatalization?

- We assume monovalent features and feature geometry.
- Under such a view, palatalization is spreading (due to *ki)
- ► NOPALATAL is a constraint against palatal vowels.

・ 同 ト ・ ヨ ト ・ ヨ ト

What is centralization?

- Centralization on the other hand is feature-loss (due to *ki)
- NOCENTRAL is a constraint against placeless vowels (*EMPTY).

We assume that *ki is best satisfied by palatalization because that preserves the underlying features rather than deleting them

- 4 同 2 4 日 2 4 日 2

What is r deletion?

An important aspect of r deletion in Samothraki is that it leaves a trace, in the form of a timing slot = lengthening of the vowel

See Topintzi 2006 for more discussion of the relevant faithfulness relation.

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

Why does r deletion create an environment for centralization?

- If palatalization is usually preferred, why is it dispreferred after r deletion?
- Notice that one independent difference between [kima] and [ki:ma] is the length of the vowel
- We propose that palatality can spread from a short vowel, but not from a long vowel, maybe due to a binarity constraint on feature association:
 - BINASS(F): A feature F can be associated to maximally two positions (see McCarthy 2004, Key 2005)

· • 🗇 • • • • • • • • • •

No opacity if the processes are well defined Independent evidence for BINASS

Allowed and disallowed

	Allo	wed	Disallowed			
X	X	X	X	X	X	X
			\square			
р	i	k	i	k		i

《曰》 《聞》 《臣》 《臣》

No r deletion

	kima	*r/0	Max-x	*ki	BINASS	*NoCentral	NoPal
a. 🖙	' k'ima		 		1		*
b.	kima		 	*!	1		
с.	kıma			 		*i	

r deletion

	krima	*r/0	MAX-x	*ki	BINASS	*NoCentral	NoPal
a.	krima	*!	 		 		
b.	k'ima		*!				*
с.	k'iːma		 		*!		*
d.	kiıma			*!			
e. 🗇	kıːma		 	 	 	*	

< ロ > < 回 > < 回 > < 回 > < 回 >

Independent evidence for BINASS

- BINASS(F) gives us a representational way of understanding non-iterative rule application
- Examples from this can be given both for other phonological phenomena in Samothraki, in other Greek dialect and elsewhere

・ 同 ト ・ ヨ ト ・ ヨ ト

More binarity in Samothraki

- There is independent evidence in Samothraki that there is a binary requirement
- This comes from *r* metathesis.
- In words with velar+r+front vowel+another vowel (/ayrius/ 'wild') we find metathesis of r rather than deletion ([ayriyus])
- Presumably this serves to avoid superlong vowel sequences
- Also here we find centralization, but this cannot be due directly to coda r, since underlying coda r does not have this effect ([adirfós, *adırfós] 'brother')
- ► Also, if the preceding consonant is not velar, we do not find the centralisation: (/priakóni/ → [pirjákon'] 'jagged file used to sharpen knives', /alétria/ → [alétirja] 'plough PL', /tria/ → [tirjá] 'three')

(日) (同) (三) (三)

R metathesis

- ► $/ayrius/ \rightarrow [ayırjus]$
- Note that the r occurs in the coda of the syllable (otherwise metathesis would not lead to onset avoidance)
- and a palatal glide occurs in the onset following it
- We suppose that the palatality of the glide comes from the underlyingly front vowel
- Thus result of the r metathesis is the following (Topintzi 2006)

- 4 回 ト - 4 回 ト

Picture of R metathesis

- [j] really needs the feature, because there is no back glide
- We cannot assign [cor] only to i, because of *ki
- ▶ But we cannot assign it to both either, because of BINASS.
- We thus only assign it to [j]

Binary spans in Cappadocian

- In Cappadocian dialects, bisyllabic harmonic spans are built at the end of the word: both vowels are the same
- Construction of the final spans is insensitive to morphological structure and (mostly) to stress
- There thus seems to be a real phonological binarity requirement

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-iterative spreading

- Non-iterative spreading is a well-known phenomenon for more languages
- It has been analyzed in terms of Comparative Markedness (which approach fails completely for Samothraki)
- But there are few other approaches on the market
- The following example is from Ekegusii (Bickmore 1996)
- This can be seen as the result of some constraint promoting spreading, and BINASS

▲□ ► ▲ □ ► ▲ □